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Moving mass control (MMC) is a new control method in control field. It is a potential way to solve the problem of aerodynamic
rudder control insufficiency caused by the low density of upper atmosphere, to reduce the high speedmissile aerodynamic thermal
load, and to solve the problem of rudder surface ablation. However, the spinning of the airframe and the movement of internal
moving mass induce the serious dynamic cross-coupling between pitch and yaw channels, which may lead to system instability in
the form of a divergent coning motion. In this paper, the mathematical model of the MMCmissile is established, and the angular
motion equation is finally obtained by some linearized assumptions. /en, the sufficient and necessary conditions of coning
motion stability for MMCmissiles with angular rate loops under fast and slow spinning rates are analytically derived and further
verified by numerical simulations. It is noticed that the upper bound of the control gain is affected by the location of the moving
mass and the spinning rate of the missile.

1. Introduction

/e moving mass control (MMC) technology changes the
position of center of mass of the system by the displacement
of the internal moving mass to generate corresponding
control torques, thereby changing the flight attitude of the
missile [1–3]. Moving mass control missile has attracted
much attention because of its special advantages. When the
missile flies in the high altitude, the conventional aero-
dynamic control cannot provide the required lateral accel-
eration, as the density of air is too low. However, the moving
mass control has the potential to solve this problem.
Moreover, as the moving mass is arranged in the airframe,
themissile has a better aerodynamic property, which reduces
the aerodynamic heat of the warhead and avoids the problem
of rudder ablation [2]. According to the number of moving
masses of the actuator, theMMCmissiles can be divided into
three types: single MMC missiles [4], double MMC missiles
[5], and triple MMC missiles.

/ere is a heavy coupling between the pitch and yaw
channel of the moving mass control spinning missile. On the

one hand, it is due to Magnus and gyroscopic effects caused by
the rotation of themissile. On the other hand, themotion of the
moving mass causes the deviation of the center of mass of the
system and the deviation of the principal axis of inertia, which
aggravates the coupling between pitch and yaw channels.Many
studies have been proposed focusing on the control for such a
system with heavy coupling, nonlinear dynamics, and para-
metric uncertainties. Zhang et al. [6] divided the dynamics of
the MMAV into the fast state part and the slow state part and
designed an autopilot for a nonlinear 6-DoF mass moment
aerospace vehicle based on fuzzy sliding mode control, using
dynamic inversion techniques. /en, Zhang et al. [7] designed
the flight control system for the MMAV via utilizing nonlinear
predictive control approach.

As for the stability for spinning missiles, many theo-
retical research studies have already been proposed. Murphy
and Flatus [8–10] analyzed the factors that cause the coning
motion of the missile, including the Magnus effect, inertial
gyroscope effect, and aerodynamic asymmetry. Further-
more, for the stability of controlled spinning missiles, Yan
et al. [11] studied the stability conditions of spinningmissiles
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with rate loop, Li et al. [12] studied the stability of spinning
missiles with an acceleration autopilot. In addition, Zhou
et al. [13] studied the coning motion instability induced by
hinge moment of the actuator.

Previous research studies mainly focus on aerodynamic
control missiles. For the study of the stability of spinning
aircraft with internal moving masses, current research
studies are mostly focused on the instability of coning
motion induced bymass deviation. For example, Carrier and
Miles [14] proposed that the center of mass of the rocket
changes due to the internal fluid motion, which led to
unstable coning motion of the rocket. El-Gohary [15, 16]
studied the stability of the mass moment satellite by means
of the Lyapunov equation and obtained the required force
and torque of the servo system satisfying the stability
conditions. However, few of the existing literatures have
considered the coning motion of a moving mass control
spinning missile with the control loop.

/us, this paper focuses on the stability of coningmotion
for a double moving masses control spinning missile with
angular rate loops. /e mathematical model of the missile
system is established. /e sufficient and necessary condition
of coning motion stability for MMC spinning missiles with
angular rate loops is analytically derived and further verified
by numerical simulations. /e stability boundary of control
gains is obtained, and moreover, the influence of installation
position of moving masses and spinning rate of the missile
on stability is analyzed.

2. System Configuration

/e moving mass control spinning missile proposed in this
paper consists of a rigid body B and two radial internal
moving masses m1 and m2 as shown in Figure 1./emoving
mass m1 moves along the yb axis while the moving mass m2
moves along the zb axis. /e mass of the body B is mb, and
the two moving masses m1 and m2 have the same mass m;
thus, the total mass of the missile system is ms � mb + 2m.
/e mass ratio of the moving mass is μ � m/ms. l is the
installation position of the moving mass, and δy and δz are
the radial displacements of the two moving masses in the
nonspinning coordinate system.

3. Mathematical Model

/e missile system is composed of three parts: the projectile
body B and two moving masses. According to the mo-
mentum theorem of particle system, the translational dy-
namics of the missile system can be described as

mB
dVB

dt
+ 

2

i�1
mi

dVi

dt
� F + L(ϑ,ψ)msg, (1)

where VB is the velocity vector of the body B relative to the
center of mass of the missile system S∗ and is given by

VB � V − c × r1 + r2( , (2)

where V � u v w 
T is the velocity vector of the body B in

the nonspinning coordinate system, γ � _c 0 0 
T is the

spinning velocity vector, and r1 and r2 are position vectors of
the two moving masses in the nonspinning CS. /e de-
rivative of equation (2) can be derived as

dVB

dt
� V + ω4 × V − c × r1 + r2(  + c × r1 + r2( (

+ ω4 × c × r1 + r2( ,

(3)

where ω4 is the angular rate of the nonspinning CS with
respect to the inertial CS. /e position vectors of the two
masses in the nonspinning CS can be denoted as

r1 � l δy4 0 
T
,

r2 � l 0 δz4 
T

,
(4)

where δy4 and δz4 are projections of δy and δz on the
nonspinning CS and are given by

δy4

δz4
  �

δy cos c − δz sin c

δy sin c + δz cos c
⎡⎣ ⎤⎦. (5)

/e velocity vector of each moving mass relative to the
center of mass of the missile system S∗ can be expressed as

Vi � V +
dri

dt
+ ω4 × ri. (6)

/e derivative of equation (6) can be derived as
dVi

dt
� V +ω4 ×V + ri +ω4 × ri + 2×ω4 × ri +ω4 × ω4 × ri( .

(7)

Substituting equations (3) and (7) into equation (1) yields



2

i�1
mi ri + ω4 × ri + 2 × ω4 × ri + ω4 × ω4 × ri( ( 

− mB c × r1 + r2(  + c × r1 + r2(  + ω4 × c × r1 + r2( ( 

+ ms V + ω4 × V(  � F + L(ϑ,ψ)msg,

(8)

where F is the vector of aerodynamic force in the non-
spinning CS and is given by

O xb

yb

zb

1

2

l
B∗ S∗•

B

δy

δz

Figure 1: System configuration of the moving mass control missile.
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F �

− X

Y

Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � QS

− Cx

Cα
yα

− Cα
yβ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

According to the theorem of angular momentum, the
rotational motion of the missile system can be described as

dHB

dt
+ 

2

i�1

dHi

dt
� MS∗ , (10)

where HB is the angular momentum of the body B, Hi is the
angular momentum of the moving mass, and MS∗ is the
external moments applied on the missile system, including
aerodynamic moments and mass eccentricity moments. HB,
Hi, and MS∗ are given by

HB � IBω1 + μ1 + μ2( 
2
mB 

2

i�1
ri × V1 + V2( , (11)

Hi � 1 − 
2

i�1
μi

⎛⎝ ⎞⎠

2

miri × V1 + V2( , (12)

MS∗ � M − 
2

i�1
μiri × Fnb, (13)

where ω1 is the angular rate of the body CS with respect to
the inertial CS. Substituting equations (10)–(12) into
equation (9) yields

IBω1 + ω4 × IBω1 + mB 

2

i�1
μiri × V1 + V2( ⎛⎝

+ ω4 × 
2

i�1
μiri × V1 + V2( ⎞⎠ � M − 

2

i�1
μiri × Fnb.

(14)

/e moments applied on the missile in the nonspinning
CS are given by

M �

Mx

My

Mz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � QSL

mωx
′ (L/V)ωx4

mα
yβ + mωy

′ (L/V)ωy4 − mμ _cα

mα
yα + mωy

′ (L/V)ωz4 + mμ _cβ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

By substituting equation (9) into equation (8) and
equation (15) into equation (14), the dynamic equations of
the missile system can be finally obtained as

_u

_v

_w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ω4 

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

0 0

μ1 0

0 μ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

€δy4

€δz4

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ +[r]

_ωx4

_ωy4

_ωz4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+[r]

2ωx4 −
mB

ms _c

2ωy4

2ωz4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ω2
  −

mB

ms

ω4 [c] 

μ1 + μ2( l

δy4

δz4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1
ms

− X

Y

Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ L(ϑ,ψ)

0

g

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

[I]
_ωx4

_ωy4

_ωz4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + mB

− μ2δz4 μ1δy4

0 − μ1 + μ2( l

μ1 + μ2( l 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

€δy

€δz

⎡⎢⎣ ⎤⎥⎦ +

Ix€c

Ix _cωz4

− Ix _cωy4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + 2mB[r] ω4 

0
_δy4

_δz4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ω2
 [r]

μ1 + μ2( l

δy4

δz4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

Mx

My

Mz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − [r]

− X

Y

Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

where

ω4  �

0 − ωz4 ωy4

ωz4 0 − ωx4

− ωy4 ωx4 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[ _c] �

0 0 0

0 0 _c

0 _c 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ω2
  � ω4  ω4 ,

Mathematical Problems in Engineering 3



www.manaraa.com

r1  �

0 0 − δy4

0 0 l

δy4 − l 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

r2  �

0 δz4 0

− δz4 0 l

0 − l 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

[r] � μ1 r1  + μ2 r2 ,

[I] �

Ix + mB μ1δ
2
y4 + μ2δ

2
z4  − mB μ1 + μ2( lδy4 − mB μ1 + μ2( lδz4

− mB μ1 + μ2( lδy4 Iy + mB μ1 + μ2( 
2
l2 + μ2δ

2
z4  − mBμ1δy4δz4

− mB μ1 + μ2( lδz4 − mBμ2δy4δz4 Iz + mB μ1δ
2
y4 + μ1 + μ2( 

2
l2 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(18)

4. Angular Motion of the Moving Mass Control
Spinning Missile

Even though the mathematical model described in equations
(16) and (17) is more accurate and close to the real case, due
to the highly nonlinear equations of motion, it is difficult to
get the analytical solution and the obvious relationship
between the flight characteristics of the missile and control
parameters. To facilitate theoretical analysis, the general
method is to apply the linearization theory of projectile. /is
theory has been regarded as an effective tool to analyze the
flight stability of projectiles and applied in references [8–13].
/erefore, in order to linearize these two equations, the
following assumptions are introduced:

(1) /e mass ratio is small, so μ � μ1 � μ2≪ 1, 1 − μ ≈ 1
(2) /e spinning rate in the nonspinning CS ωx4 keeps

constant and is equal to zero, and €c is small, so €c � 0
(3) Variables ωy4, ωz4, v, w, α, and β are small
(4) /e gravity effect is negligible
(5) l keeps constant, so _l � €l � 0
(6) /e missile is strictly axisymmetric, so Iy � Iz

Under these assumptions, the equations for lateral
translational and rotational motion in equations (16) and
(17) can be simplified to

_v �
Y

ms

− ωz4u −
mB

ms

  _c _δz4,

_w �
Z

ms

+ ωy4u +
mB

ms

  _c _δy4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

_ωy4 �
My

I2
+
2μlZ

I2
+
μXδz4

I2
−

I1
I2

 ωz4 _c +
2μmBl€δz

I2
,

_ωz4 �
Mz

I2
−
2μlY

I2
−
μXδy4

I2
+

I1

I2
 ωy4 _c −

2μmBl €δy

I2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

/e angles of attack α and sideslip β are defined as

α � − arctan
v

u
  � −

v

u
,

β � arcsin
w

V
  �

w

V
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

By defining the complex angle of attack ξ � − β + iα, the
complex angular rate Ω � ωz4 + iωy4, and the complex
control instruction δ � δy4 − iδz4, equation (19) can be
reformulated as

Ω � − i _ξ + i
QS Cx − Cα

y 

msV
ξ − i

mB _c

msV
_δ. (22)

Equation (20) can be reformulated as

_Ω � − i
I1
I2

_cΩ −
2μmBl

I2

€δ + i
2μlQSCα

y

I2
ξ − i

QSLmα
y

I2
ξ

−
μQSCx

I2
δ +

QSLmωy
′

I2

L

V
Ω −

QSLmμ _c

I2

L

V
ξ.

(23)

Substituting equation (22) into equation (23), the an-
gular motion equation of the moving mass spinning missile
can be obtained as

€ξ + A _ξ + Bξ � C, (24)

where A � − mω
n − k5 + ik1, B � − mα

n + k4 + i(mmα + k1k5),
C � − imδ

nδ − (− mω
n k3 + ik1k3)

_δ − (k3 + ik2)
€δ, k1 � (I1/I2) _c,

k2 � (2μmBl)/I2, k3 � mB _c/msV, k4 � (2μlQSCα
y)/I2, k5 �

(QS(Cx − Cα
y))/mSV, mω

n � (QSL2Cωz
′ )/I2, mα

n � (QSLmα
y)

/I2, mmα � (QSL2mμ _c)/I2V, and mδ
n � (QSCxμ)/I2.

According equation (24), the equilibrium point is de-
termined by

ξe �
C

B
�

C1 + C2

B
� ξe1 + ξe2, (25)

where C1 � − imδ
nδ and C2 � − (k1k3 + i _k3)

_δ − (k3 + ik2)
€δ.

4 Mathematical Problems in Engineering
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ξe1 is the complex angle of attack generated by system
centroid offset caused by the movement of the moving mass.
Suppose that the spinning rate of the missile is zero and the
position of the moving mass remains fixed, we get

ξe1 �
− imδ

nδ
− mα

n + k4
. (26)

ξe2 is the complex angle of attack generated by the offset
of the principal axis of inertia and was estimated by Hodapp
and Clark in [17] as

ξe2


 �
μmSl

I2
δmax. (27)

5. Stability of the Moving Mass Spinning
Missile with the Angular Rate Loop

/e control system with angular rate loops is shown in
Figure 2, in which ny and nz are control commands, _ϑ and _ψ
are feedback signals, and kω is the gain.

It can be seen from Figure 2 that the input commands to
the actuators can be described as

ny

nz

  �
− kω 0

0 − kω
 

_ϑ
_ψ

⎡⎣ ⎤⎦. (28)

According to the definition of coordinate system and
angle, negative angle of attack will generate positive pitching
acceleration, while positive angle of sideslip will generate
positive yaw acceleration. /erefore, the displacement in-
struction of the moving mass is obtained as

δyc

δzc

  �
− 1 0

0 1
 

ny

nz

 . (29)

Meanwhile, based on the assumption that the missile is
in horizontal flight, there exists an approximation re-
lationship: _α � _ϑ and _β � _ψ. /us, equation (29) can be
expressed as

δyc

δzc

  �
− kω 0

0 kω
 

_α
_β

 . (30)

Converting equation (30) into the complex form, one has

δ � ikω
_ξ. (31)

Substituting equation (31) into equation (24) yields

− k2kω + ik3kω(  + 1 − k1k3kω − im
ω
n k3kω( €ξ

+ − kωm
δ
n − m

ω
n − k5 + ik1  _ξ

+ − m
α
n + k4 + i mmα + k1k5( ( ξ � 0.

(32)

5.1. Slow Spinning Rate Case. For slowly spinning missiles,
the main factor for the generation of angle of attack is the
mass eccentric moment caused by the movement of moving
masses. /erefore, when studying the stability of slowly
spinning missiles, the first- and second-order derivatives of

the position of moving masses can be ignored. /en,
equation (32) can be simplified as

€ξ + Hc + iPc(  _ξ − Mc + iQc( ξ � 0, (33)

where Hc � − kωmδ
n − mω

n − k5, Pc � k1, Mc � mα
n − k4, and

Qc � − (mmα + k1k5).
/e corresponding characteristic equation is

λ2 + Hc + iPc( λ − Mc + iQc(  � 0. (34)

Assuming (Hc + iPc)
2 + 4(Mc + iQc) � Rc, where

Rc � Rcre + iRcim, (35)

one gets
Rcre � H2

c − P2
c + 4Mc,

Rcim � 2HcPc + 4Qc,
 (36)

/en, the characteristic roots of equation (34) are given by

λ1,2 �
1
2

− Hc ±

���������

Rc + Rcre




2



⎛⎝ ⎞⎠ +
1
2

− Pc ±

���������

Rc


 − Rcre

2



⎛⎝ ⎞⎠i.

(37)

According to Lyapunov stability theory, the sufficient and
necessary condition for stability of the moving mass missile
under low spinning rate with rate loops can be obtained as

− Hc ±

���������

Rc


 + Rcre

2



< 0. (38)

Because
������������
(|Rc| + Rcre)/2


> 0, in order to ensure that

equation (38) is true, the following inequality must be met:

− Hc < −

���������

Rc


 + Rcre

2



. (39)

Substituting Hc, Rc, and Rcre into equation (39) yields

m
δ
n 

2
k
2
ω − m

α
n + k4(  + 2 m

ω
n + k5(  − m

α
n + k4( (

− k1 mmα + k1k5( m
δ
nkω + m

ω
n + k5( 

2
− m

α
n + k4( 

− m
ω
n + k5( k1 mmα + k1k5(  − mmα + k1k5( 

2 > 0.

(40)

Missile dynamicsActuator

–kω

–kω

ny

nz

δyc

δzc ψ.

ϑ
.

Figure 2: Moving mass control missile system with angular rate
loops.
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To facilitate the analysis, a polynomial f(kω) is
introduced:

f kω(  � ak
2
ω + bkω + c, (41)

where a � (mδ
n)2(− mα

n + k4), b � (2(mω
n + k5)(− mα

n + k4) − k1
(mmα + k1k5))m

δ
n, and c � (mω

n + k5)
2(− mα

n + k4) − (mω
n + k5)

k1(mmα + k1k5) − (mmα + k1k5)
2.

For slowly spinning missiles, k1 and mmα are small. /e
sign of a and b mainly depends on the sign of the first term
on the right-hand side, so a and b have opposite signs. Two
cases are discussed below:

(1) /e first case is when a> 0, one gets − mα
n + k4 > 0,

b< 0, and c> 0, and the curve of f(kω) is illustrated
by Iin Figure 3. /e intersections of f(kω) and the
axis are given by

kω11 �
− b −

�������
b2 − 4ac

√

2a
,

kω12 �
− b +

�������
b2 − 4ac

√

2a
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(42)

/us, only when kω < kω11 or kω > kω12, one gets
f(kω)> 0. /e sufficient and necessary condition for
the coning motion stability can be derived as

kω ∈ 0, −
mω

n + k5

mδ
n

 ∩ 0, kω11( ∩ kω12,∞( . (43)

(2) /e second case is when a< 0, one gets − mα
n + k4 < 0,

b> 0, and c could be positive or negative. Ignore the
sign of c, and the intersections of f(kω) and the x
axis are given by

kω21 �
− b +

�������
b2 − 4ac

√

2a
,

kω22 �
− b −

�������
b2 − 4ac

√

2a
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(44)

/us, only when kω21 < kω < kω22, one gets f(kω)> 0.
/e sufficient and necessary condition for the coning
motion stability can be derived as

kω ∈ 0, −
mω

n + k5

mδ
n

 ∩ kω21, kω22( . (45)

5.2. Fast Spinning Rate Case. For fast spinning missiles, the
main factor for generation of angle of attack is the deviation of
the principal axis of inertia. For the convenience of analyzing,
assume that moving masses are installed at the center of mass
of the projectile body, that is, l � 0. /en, one gets k2 � 0 and
k4 � 0. By neglecting the effect of Magnus moment and
considering k5 to be small, equation (32) can be simplified as

ξ
...

+ a01 + ia11( €ξ + a02 + ia12(  _ξ + ia13ξ � 0, (46)

where a01 � − mω
n , a11 � (k1k3kω − 1)/(k3kω), a02 � k1/

(k3kω), a12 � (kωmδ
n + mω

n )/(k3kω), and a13 � − mα
n/(k3kω).

/e characteristic equation of equation (46) is given by

λ3 + a01 + ia11( λ2 + a02 + ia12( λ + ia13 � 0. (47)

According to the theorem proved in [18], the sufficient
and necessary condition for stability of the moving mass
missile under fast spinning rate with rate loops can be
expressed as

a01 > 0,

a2
01a02 + a01a11a12 − a2

12 > 0,

a2
01a02 + a01a11a12 − a2

12(  a01a12a13(  − a2
01a13( 

2 > 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(48)

Because a01 � − mω
n > 0, equation (48) is rewritten as

c1 � a2
01a02 + a01a11a12 − a2

12 > 0,

c2 � a01a12a13 > 0,

c3 � a2
01a02 + a01a11a12 − a2

12(  a01a12a13(  − a2
01a13( 

2 > 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(49)
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Figure 3: Simulation results for kω � 0.1933. (a) /e stable coning
motion. (b) Curves of angle of attack and angle of sideslip.
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Substituting all the coefficients into equation (49) yields

c1 � a
2
01a02 + a01a11a12 − a

2
12

�
− mω

n mδ
nkω − mω

n mδ
nk1k3 + mδ

n( 
2

 k2
ω

k2
3k

2
ω

> 0,

(50)

c2 � a01a12a13 �
− mω

n mα
n kωmδ

n + mω
n( 

k2
3k

2
ω

> 0, (51)

c3 � −
p1k

2
ω + p2kω + p3

k4
3k

3
ω

> 0, (52)

where

p1 � m
ω
n( 

2
m

δ
n 

2
m

α
nk1k3 + m

ω
n m

δ
n 

3
m

α
n,

p2 � 2 m
ω
n( 

2
m

δ
n 

2
m

α
n + m

ω
n( 

3
m

δ
nm

α
nk1k3 + − m

ω
n( 

4
m

α
n( 

2
k
2
3,

p3 � m
ω
n( 

3
m

δ
nm

α
n.

(53)

For the moving mass control missile under fast spinning
rate, one has |mω

n mδ
nk1k3|> (mδ

n)2; thus, equation (50) is
always true. Because mα

n > 0, to make equation (51) true, one
should have

kω <
− mω

n

mδ
n

� kω21. (54)

To make equation (52) true, one should have

p1k
2
ω + p2kω + p3 < 0. (55)

For fast spinning missile, one has p1 > 0, p2 < 0, and
p3 < 0. /us, the true condition for equation (55) can be
obtained as

0< kω <
− p2 +

���������

p2
2 − 4p1p3



2p1
� kω22.

(56)

Finally, the sufficient and necessary condition for sta-
bility of moving mass missile under fast spinning rate with
rate loops can be expressed as

kω ∈ 0, kω21( ∩ 0, kω22( . (57)

6. Numerical Simulation Results

To demonstrate the proposed stability condition above,
numerical simulations are run for two sample moving mass
missiles with different spinning rates.

6.1. Slow Spinning Rate Case. /e parameters of a slowly
spinning missile are listed in Table 1.

According to the formulae derived above, the calculated
upper bound of the control loop gain is obtained as 0.3866.
/e simulation results for the control loop gain kω � 0.1933,
which satisfies the stability condition, are shown in Figure 3.

It can be seen obviously that the coningmotion of themissile
converges to zero quickly.

/e simulation results for the critical control loop gain
kω � 0.3866 are shown in Figure 4. It is observed that the
coning motion of the missile neither converges nor diverges
but presents a critical stable state. /e simulation results for
kω � 0.5798 are shown in Figure 5. It can be seen that the
coning motion is divergent.

Table 1: Parameters of a slowly spinning missile.

Parameters Value
ms(kg) 96.6
μ 0.04
L(m) 1.5
S(m2) 0.2
_c(rad·s− 1) 10
l(m) 0.1
I1(kg·m2) 5.4
I2(kg·m2) 58.5
Cωz

n − 5.3
Cα

n − 0.1
Cmα − 1.5
V(m·s− 1) 1140
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Figure 4: Simulation results for kω � 0.3866. (a)/e critical coning
motion. (b) Curves of angle of attack and angle of sideslip.
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6.2. Influence of the System Parameter. In this section, the
influence of the location of the movingmass l and the spinning
rate of the missile _c on the stability criterion is demonstrated.
/e relation between the installation position l of the moving
mass and the upper bound of the control loop gain kω is shown
in Table 2. It can be observed from the table that the upper
bound of kω increases as the location of the moving mass
moves towards the warhead. /is is because with the increase
of l, the static stability of the missile is continuously
strengthened, which leads to the increase of the dynamic
stability region and the increase of the upper bound of kω.

/e relationship between the spinning rate and the upper
bound of the design gain kw is shown in Table 3.

As can be seen obviously, the increase of the spinning
rate decreases the stable region of the control design gain.
/is is because the higher spinning rate leads to a more
serious coupling between pitch and yaw channels.

6.3. Fast Spinning Rate Case. /e parameters of a fast
spinning missile are listed in Table 4.

/e upper bound of kω in this case is 0.5522 according to
the stability condition described in equation (57). /e

coning motions under kω � 0.4418 and kω � 0.6626 are
shown in Figures 6 and 7, respectively, from which it can be
seen that the coning motion is stable when kω � 0.4418,
while it is unstable when kω � 0.6626.

Furthermore, the upper bound of kω under different
spinning rates is shown in Table 5. It can be verified that the
stable region of the control gain increases with the increase
of the spinning rate. /is is because the higher spinning rate
causes a stronger inertia moment.
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Figure 5: Simulation results for kω � 0.5798. (a) /e unstable coning motion. (b) Curves of angle of attack and angle of sideslip.

Table 2: Upper bounds of kω under different installation positions of moving masses.

Parameters Value
l(m) − 0.1 0 0.1 0.2 0.3 0.4
kω 0.31 0.35 0.385 0.416 0.44 0.46

Table 3: Upper bounds of kω under different spinning rates.

Parameters Value
_c(rad/s) 1 2 3 4 5 6 7 8 9 10
kω 0.82 0.77 0.71 0.67 0.61 0.56 0.50 0.45 0.40 0.35

Table 4: Parameters of a slowly spinning missile.

Parameters Value
ms(kg) 96.6
μ 0.04
L(m) 1.5
S(m2) 0.15
_c(rad·s− 1) 1000
I1(kg·m2) 5.4
I2(kg·m2) 58.5
Cωz

n − 4.8
Cα

n 0.1
V(m·s− 1) 1140
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7. Conclusion

In this paper, the mathematical equation of a moving mass
spinning missile is established. /e sufficient and necessary
condition of the coning motion stability for moving mass
missiles with angular rate loops is analytically derived under
different spinning rates and further verified by numerical
simulations. Simulation results show that there exists a sta-
bility boundary value for the control gain. If the control gain
exceeds it, the coning motion of the missile will diverge and
the system will become unstable. It is also noticed that for the
slowly spinning missile, as the location of the moving mass
increases, the stability region of the system increases, while
the spinning rate of the missile increases and the stability
region of the system decreases greatly. For the fast spinning
missile, the system stability region increases with the increase
of the spinning rate. /is paper is mainly based on the

linearization theory of projectiles, so the stability condition
obtained in this paper is applicable to the linearized missile
model. In the future, we will focus on the stability analysis of
nonlinear model of the moving mass control missile.

Nomenclature

Cx: Drag coefficient
Cα

y: Lift coefficient
F: Force vector, kg·m/s2
H: Angular momentum vector, kg·m2/s
I: Inertial moment, kg·m2

kω: Gain of angular rate feedback
l: Installation position of the moving mass
L: Airframe diameter, m
M: Force moment vector, kg·m2/s2
m: Mass
mωx
′ : Coefficient of roll damping moment

mα
y: Coefficient of static moment

mωy
′ : Coefficient of damping moment

mμ: Coefficient of Magnus moment
ny, nz: Input command
Q: Dynamic pressure, N·m2

r1, r2: Position vector of the moving mass
S: Reference area, m2

V: Velocity vector
α: Angle of attack
β: Angle of sideslip
ϑ, ψ, c: Pitch, yaw, and roll angle, rad
δy, δz: Radial displacement of the moving mass
δyc, δzc: Radial displacement command of the moving mass
μ: Mass ratio
ω: Angular rate vector

Subscripts
B: Missile body
S: Missile system.
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